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2LGIT/CNRS, Université Joseph Fourier BP53, 38041 Grenoble Cedex 9, France

3School of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, UK

(Received 19 February 2001 and in revised form 12 July 2001)

We consider axisymmetric magnetohydrodynamic motion in a spherical shell driven
by rotating the inner boundary relative to the stationary outer boundary – spherical
Couette flow. The inner solid sphere is rigid with the same electrical conductivity as
the surrounding fluid; the outer rigid boundary is an insulator. A force-free dipole
magnetic field is maintained by a dipole source at the centre. For strong imposed
fields (as measured by the Hartmann number M), the numerical simulations of
Dormy et al. (1998) showed that a super-rotating shear layer (with angular velocity
about 50% above the angular velocity of the inner core) is attached to the magnetic
field line C tangent to the outer boundary at the equatorial plane of symmetry. At
large M, we obtain analytically the mainstream solution valid outside all boundary
layers by application of Hartmann jump conditions across the inner- and outer-sphere
boundary layers. We formulate the large-M boundary layer problem for the free shear
layer of width M−1/2 containing C and solve it numerically. The super-rotation can be
understood in terms of the nature of the meridional electric current flow in the shear
layer, which is fed by the outer-sphere Hartmann layer. Importantly, a large fraction
of the current entering the shear layer is tightly focused and effectively released from
a point source at the equator triggered by the tangency of the C-line. The current
injected by the source follows the C-line closely but spreads laterally due to diffusion.
In consequence, a strong azimuthal Lorentz force is produced, which takes opposite
signs either side of the C-line; order-unity super-rotation results on the equatorial
side. In fact, the point source is the small equatorial Hartmann layer of radial width
M−2/3 (�M−1/2) and latitudinal extent M−1/3. We construct its analytic solution and
so determine an inward displacement width O(M−2/3) of the free shear layer. We
compare our numerical solution of the free shear layer problem with our numerical
solution of the full governing equations for M in excess of 104. We obtain excellent
agreement. Some of our more testing comparisons are significantly improved by
incorporating the shear layer displacement caused by the equatorial Hartmann layer.

1. Introduction
The steady flow of viscous fluid confined inside a spherical shell, which results

when the inner (radius r∗i ) and outer (radius r∗o) boundaries rotate at different angular
velocities Ω∗i and Ω∗o respectively about a common axis, is referred to as spherical
Couette flow. When the spheres almost corotate rapidly, the motion measured in a
frame corotating with (say) the outer sphere is slow and satisfies linear equations.
The determination of the resulting steady flow is a classical problem in the theory of
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rotating fluids. Proudman (1956) showed that the mainstream flow outside boundary
layers is predominantly geostrophic, while its magnitude is determined by the Ekman
suction into and out of the Ekman layers attached to the inner and outer spherical
boundaries. The Ekman layer is singular on the equator of the inner sphere; this
feature is linked to the existence of a free shear layer on the tangent cylinder to the
inner sphere extending from its equator to the intersection with the outer sphere. The
nature of the flow in this tangent-cylinder shear layer was resolved by Stewartson
(1966), while the extension of this shear layer analysis to more general geometries was
undertaken by Moore & Saffman (1969). The strong shear at the tangent cylinder
was reproduced numerically by Hollerbach (1994) down to small Ekman number
E = 5 × 10−6. Decreasing E further to E = 10−8, Dormy, Cardin & Jault (1998)
recovered the structure of the free shear layer found by Stewartson (1966).

In the case of electrically conducting fluid, the magnetohydrodynamic flow that
results in the presence of an applied axisymmetric meridional (poloidal) magnetic field
is considerably more complicated. The MHD extension to the Proudman–Stewartson
problem described above was first investigated numerically by Hollerbach (1994),
who considered an axial dipole magnetic field. The inner solid sphere (r∗ 6 r∗i ) was
assumed to be an insulator (unlike the case of a solid sphere with the same electrical
conductivity as the fluid, which we will consider) as was the solid outer region (r∗ > r∗o).
When the applied dipole magnetic field is sufficiently weak that the Lorentz force, as
measured by the Hartmann number M, remains small compared to the Coriolis force
(specifically small Elsasser number EM2), he found that a free shear layer remained
on the tangent cylinder; the structure of this layer was determined by Kleeorin et
al. (1997). When the Coriolis and Lorentz forces are comparable, EM2 = O(1), the
inner and outer boundary layers are of mixed Ekman–Hartmann type, whereas the
free shear layer evaporates. Nevertheless, when the applied magnetic field is strong,
EM2 � 1, a free shear layer reappears but now aligned with the magnetic field lines
which graze either the inner or the outer boundary; elsewhere on these boundaries
the boundary layers are predominantly Hartmann in character. Models of this type
were developed by Starchenko (1997). In the case of the dipole field, the grazing field
line is the one which touches the outer spherical boundary at its equator. The strong
dipole field is the limit that interests us here and below we will expand in greater
detail on the background to our chosen model.

The rapid rotation limit E � 1 with EM2 = O(1) has geophysical applications. The
numerical geodynamo simulations of Glatzmaier & Roberts (1995) have revealed the
importance of detached shear layers in rotating MHD systems. Indeed a liquid sodium
prototype of a dynamo experiment based on fluid instabilities riding on these layers
is now being built in Grenoble: a spherical cavity filled with sodium will be enclosed
between a permanent magnet and an outer container made of inox; measurement of
the electrical potential will give insight into the dynamics inside the cavity because
the outer boundary is poorly conducting. Recently there has been much discussion
about a possible differential rotation between the solid inner core and the mantle of
the Earth. There is now some evidence indicating that the speed of the inner core
surface relative to the mantle is no larger than the fluid velocity at the core surface,
as inferred from the secular variation of the Earth’s magnetic field (Vidale, Dodge &
Earle 2000). The differential rotation between the inner solid core and the outer solid
mantle, together with the detached shear layers occurring in the numerical dynamo
experiments, points to the importance of the idealized model of spherical Couette
flow in the presence of an applied magnetic field, as described above. Kleeorin et al.
(1997) adopted an applied dipole field because it is meridional and as such interacts
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strongly with the predominantly azimuthal flow driven by the differential rotation of
the boundaries. Another attractive feature of a dipole magnetic field is that it is force
free and so by itself drives no motion. Of course, in the Earth that differential rotation
may well be caused by the angular momentum transport resulting from asymmetric
convection; such complications are outside the scope of the simplified models driven
by differential rotation described above.

In order to understand processes that are predominantly magnetic in character,
we concern ourselves with the strong field limit EM2 � 1. This is outside the geo-
physically relevant parameter range, but may be pertinent to certain slowly rotating
planetary objects with strong magnetic fields. Then the Coriolis force is relatively
small and whether or not the system is in rapid rotation ceases to be a significant
issue (Starchenko 1997). Much of the dynamics in that limit is captured by the simpler
problem in which the outer sphere is at rest (Ω∗o = 0). We will study that problem
in the case of small differential rotation and so will require that the inner sphere
rotates slowly. Motivated by planetary applications, we assume that the inner sphere
is electrically conducting having the same conductivity as the fluid, while the outer
boundary is an electrical insulator. Though, of course, for laboratory applications
other electrical boundary conditions are of interest too. The typical strength B∗0 of the
force-free applied dipole magnetic field and the importance of advection are measured
by the Hartmann and magnetic Reynolds numbers

M =
L∗B∗0√
µoρνη

and RM =
L∗2Ω∗i
η

(L∗ = r∗o − r∗i ) (1.1a, b)

respectively, where ρ is the density, ν is the viscosity, µo is the magnetic permeability
and η is the magnetic diffusivity. We restrict attention to strong magnetic fields and
slow steady flow which correspond to the limits

M � 1 and RM � 1. (1.2a, b)

The later assumption ensures that the magnetic field perturbations are small and is
essentially the basis on which we linearize our equations.

In our large Hartmann number limit, various boundary layers can be isolated.
Hartmann layers of width δ∗H =

√
µ0ρνη/B

∗
0 = L∗/M form on the inner and outer

boundaries. The free shear layer, mentioned above, forms about the magnetic field
line, which we call C, that touches the outer sphere at its equator. This layer has
characteristics similar to the free shear layer caused by current injection and removal
by electrodes in channel flow (see Müller & Bühler 2001, Chap. 7) and has the
same width

√
L∗δ∗H = L∗/M1/2 as sidewall boundary layers (see Roberts 1967a). The

presence of the C-line shear layers in the shell were clearly identified by the numerical
simulations of Dormy et al. (1998) (see also Dormy 1997 and the discussion in
Starchenko 1998a,b). Surprisingly Dormy et al. (1998) found that the angular velocity
in these M−1/2-shear layers exceeded by about 50% the angular velocity Ω∗i of the
inner sphere. We say surprising because Lenz’s law says that the Lorentz force acts to
retard motion, which locally is evidently not true here. Indeed the situation provides
yet another ‘warning example to those who might wish to apply Lenz’s law in detail!’
(Roberts 1967a , p. 183). Dormy et al.’s (1998) finding was subsequently given further
numerical support by Hollerbach (2000, 2001) and Hollerbach & Skinner (2001).
Those papers emphasize that the nature of the electromagnetic boundary conditions
play an extremely important role. Indeed their numerical results show that when both
the inner and outer spheres are electrically conducting, the super-rotation is very
large, O(M0.6). The sensitivity to boundary conditions can be traced to the role played
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by the Hartmann jump conditions on the inner and outer boundaries. We elaborate
on this point in § 6, where we offer a tentative explanation for this large power law.
A comprehensive analysis of that intriguing case is challenging and lies outside the
scope of this present paper.

Though Starchenko (1997) considered the case of a rotating shell (E � 1), he
worked in the large Elsasser number limit for which the boundary layer structures
that he isolated are largely similar to those that we consider. Indeed, he proposed
a mechanism for super-rotation. The effect he isolated is in fact small but may well
produce an O(M−1) super-rotation in the equatorial mainstream region, as we explain
in § 6. Nevertheless, being small it is not responsible for the O(1) super-rotation that
occurs in the C-line shear layer.

In this paper, we develop an asymptotic large-M theory and compare it with
numerical integrations of the complete governing equations at large but finite M. Our
development is organized as follows. In § 2 we formulate our problem. We describe
the mainstream solution, first obtained by Starchenko (1997), valid outside boundary
layers and compare it to the numerical solution of the complete governing equations.
The differential rotation leads to a current flow from the inner conducting sphere
out through the fluid along the meridional magnetic field lines. On arrival at the
outer boundary it is carried to the equator inside the Hartmann boundary layer and
is returned along the C-line to the inner sphere. In § 3.1 we formulate the C-line
shear layer problem and report results of its numerical solution; in § 3.2 we obtain
analytic solutions for the narrow gap limit. In § 4 more detailed comparisons are made
between the numerical results for the boundary layer and the complete problem. Now
it is important to appreciate that a significant fraction of the Hartmann layer current
reaches the small equatorial Hartmann layer (the shaded region on figure 7 below),
which is only a point on the scale of the C-line shear layer. The current from
this point source follows the C-line but spreads laterally causing the azimuthally
directed Lorentz force to take opposite signs on either side. The fluid is de-accelerated
(accelerated) on the polar (equatorial) side by an O(1) amount. The equator-side
acceleration provides the O(1) super-rotation.

Some small discrepancies are found in the numerical comparisons between the full
numerics and the shear layer theory. These may be traced to low-order corrections
which arise because the free shear layer intersects the outer-sphere boundary in the
vicinity of its equator over a relatively long latitudinal length O(L∗M−1/4). Here a thin
Hartmann layer can still be distinguished but thickens as the equator is approached.
Eventually it becomes the equatorial Hartmann layer, which constitutes the source
mentioned above, with characteristics more in common with sidewall boundary layers;
it has width O(L∗M−2/3), extends over the latitudinal length scale O(L∗M−1/3) and
its existence leads to the source of the dominant correction to the free shear layer.
In § 5, we obtain the analytic solution for this layer using a remarkable technique
developed by Roberts (1967b) (see also Roberts 2000) for a closely related problem.
Our result enables us to determine a displacement thickness δ∗ = O(L∗M−2/3) for the
M−1/2-shear layer. By that we mean that the shear layer is effectively triggered on the
equatorial plane at a radius r∗o − δ∗ rather than at the outer boundary r∗o . With the
inclusion of this correction to the shear layer solution, we find excellent agreement
with the full numerical simulations.

2. Formulation
We adopt L∗, L∗Ω∗i and B∗0 as our units of length, velocity and magnetic field

respectively; the superscript star is dropped for all dimensionless quantities.
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Figure 1. The northern hemisphere geometry. At large M, the polar P and equatorial E mainstream
regions are separated by the shear layer containing the magnetic field line C joining Eo to Q.

Relative to cylindrical polar coordinates (s, φ, z), our applied dipole magnetic field
is

BM = ∇A × φ̂

s
= −∇Φ =

(
3sz

2r5
, 0,

2z2 − s2
2r5

)
, (2.1a)

where

A = 1
2
s2/r3, Φ = 1

2
z/r3

(
r :=

√
s2 + z2

)
. (2.1b)

It determines

s−2|∇A| = |BM |2 = 1
4

(s2 + 4z2)/r8. (2.1c)

The magnetic field line C: A = 1/2ro divides the fluid shell up into two domains
P: A < 1/2ro and E: A > 1/2ro. In the former polar domain P the magnetic field
lines intersect both the inner and outer shell boundaries r = ri and r = ro, where
ro − ri = 1. In the latter equatorial domain E the magnetic field lines intersecting
the inner sphere boundary cross the equator within the fluid and return to the inner
sphere without ever meeting the outer spherical boundary. The dividing line C is
important because it has grazing contact with the outer sphere at the equator Eo.
There we find it convenient to introduce the alternative Hartmann number

M := 1
2
r−2
o M (2.2)

based on the local magnetic field strength B∗0/2r3
o (s = ro, z = 0 in (2.1c)) and the

length r∗o . We denote the intersection of C with the inner sphere by Q (see figure 1).
The slow steady azimuthal velocity (0, sΩ, 0) forced by rotating the inner sphere

induces small magnetic field perturbations (0, RMB, 0). The equations of motion and
magnetic induction are linearized on the basis that RM is small and their φ-components
give

M2s−1 BM · ∇ (sB) +
(∇2 − s−2

)
(sΩ) = 0, (2.3a)

sBM · ∇Ω +
(∇2 − s−2

)
B = 0. (2.3b)
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Figure 2. The full numerical solutions of the governing equations for the radius ratio ri/ro = 0.35 at
increasing values of M. Contours at uniformly spaced levels of constant positive (negative) isovalues
of V+, V−, Ω− 1 and −MsB in the meridional plane are indicated by the continuous (dotted) lines.

On the rigid outer insulating boundary (r = ro), we require that

Ω = 0, B = 0, (2.4a, b)

while on the inner boundary (r = ri), the no-slip condition requires that

Ω = 1. (2.5a)

Since the inner solid sphere is a conductor with the same conductivity as the fluid,
we therefore require that

B and
∂B

∂r
are continuous across r = ri (2.5b)
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with B satisfying (∇2 − s−2
)
B = 0 in r < ri. (2.6)

It is also helpful to take advantage of the symmetries corresponding to those of
the applied dipole field, A(s,−z) = A(s, z), namely Ω(s,−z) = Ω(s, z) and B(s,−z) =
−B(s,−z), which respectively imply

∂Ω

∂z
= B = 0 on the equator z = 0. (2.7)

In the large Hartmann number limit M � 1 for which our asymptotic analysis is
valid, the dissipation in the mainstream exterior to all boundary layers is negligible.
With the neglect of viscosity, the Lorentz force vanishes j × BM = 0, where j =

s−1∇sB × φ̂ is the electric current measured in appropriate units, implying that the
current lines sB = constant are aligned with the meridional magnetic field lines.
Likewise with the neglect of Ohmic diffusion, the magnetic field is frozen to the fluid
and satisfies Ferraro’s (1937) law of isorotation, namely that the angular velocity Ω is
constant on field lines. From a more formal point of view, (2.3) have solutions with
functional form

Ω =F(A) + O(M−1), sB = −r2
oM

−1G(A) + O(M−2) (2.8a, b)

(cf. Starchenko 1997, equation (31)), in which the leading-order terms depend on A
alone.

In order to understand the nature of the boundary layer structures, we introduce
the Alfvén variables

V± = sΩ ± MB, (2.9)

which satisfy (2.3) when

BM · ∇V± ± M−1
(∇2 − s−2

)
V± = s−1Bs V∓. (2.10)

They should be interpreted as advection–diffusion equations, which are coupled by the
source terms on their right-hand sides. The advection is manifested by BM; when BM
directed from the inner to the outer sphere, V+ (V−) is convected inwards (outwards).
As a consequence, V+ (V−) is continuous across the Hartmann layer on the outer
(inner) sphere. Continuity of V+ across the outer Hartmann layer together with the
boundary condition (2.4a, b) implies that the mainstream boundary condition on the
outer sphere is

sΩ +MB → 0 as r ↑ ro. (2.11)

On the inner boundary, the complete solution of the Hartmann layer equations, which
satisfy the boundary conditions (2.5a, b), is

B ≈ Bi +
1

M|Bri|
(
∂B

∂r

)
i

{
1− exp

[−M|Bri|(r − ri)]} , (2.12a)

Ω ≈ 1 +
1

sBri

(
∂B

∂r

)
i

{
1− exp

[−M|Bri|(r − ri)]} , (2.12b)

provided that

M|Bri| |Bi| �
∣∣∣∣(∂B∂r

)
i

∣∣∣∣ , (2.12c)

where Bi and (∂B/∂r)i denote the values of B and its radial derivative inside (but at
the boundary of) the solid conductor, while Bri denotes the radial component of BM
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normal to the boundary at the location (si, zi). This yields the mainstream boundary
conditions

B → Bi +
1

M|Bri|
(
∂B

∂r

)
i

, Ω → 1 +
1

siBri

(
∂B

∂r

)
i

as r ↓ ri, (2.12d )

on the inner sphere.
The mainstream solution, that satisfies the symmetry conditions, Ω(s,−z) = Ω(s, z),

B(s,−z) = −B(s, z) and the Hartmann jump conditions (2.11), (2.12), is

F(A) = 1 everywhere (except on A = AQ = 1/2ro) (2.13a)

and

G(A) =

{
A/AQ in region P: 0 6 A < AQ

0 in region E: AQ < A 6 1/2ri

(2.13b)

(cf. Starchenko 1997, equation (79)). In applying (2.12d), we have assumed that
(1/Bi) (∂B/∂r)i is of order unity, i.e. the radial length scale adopted by the potential
solution inside the solid sphere is the same as the latitudinal length scale on its
surface. So, since B = O(M−1), the mainstream boundary condition (2.12d) reduces
to Ω = 1 + O(M−1) as r ↓ ri. Consequently, the terms neglected in our application
of the boundary conditions (2.11) and (2.12d) are both O(M−1) consistent with our
assumption (2.8). Note, however, that our error estimates are larger (O(M−1/2)) near
Q, where the C-line shear layer has a short O(M−1/2) length scale, but the inequality
(2.12c) is still met comfortably.

From (2.8b) and (2.13b) we deduce that the total electric current flowing outwards
in the polar region P is

Jout := 2π(sB)A=AQ = − π/M (2.14)

(see (2.2)). Since none flows in the equatorial region E, it is all returned along the
C-line shear layer.

We performed direct simulations of equations (2.3) up to Hartmann number
2M := M/r2

o = 104 for the radius ratio ri/ro = 0.35. In order to achieve better
comparison with the asymptotics, we considered an initial value problem in which we
reinstated inertia into (2.3a) by replacing the zero on its right-hand side by ∂Ω/∂t.
It is important to appreciate that this is purely a device to aid convergence and only
the final steady state is of interest. The two scalars Ω and B are represented as

Ω =

L∑
0

Ωl(r)P
1
2l+1(cos θ), B =

L∑
1

Bl(r)P
1
2l(cos θ), (2.15a, b)

where θ is the colatitude. We calculated Bl and Ωl on a radial grid stretched so that
inner and outer Hartmann layers are well resolved. For M/r2

o = 104 we employed
very high resolution (5000 points in radius and harmonics up to L = 220). The
solutions in meridional planes are illustrated in figure 2. The constancy of sB on
magnetic field lines in the polar region P implied by (2.13b) is clear. The absence
of contours of constant sB in E and Ω in both P and E is consistent with (2.13).
Evidently a free shear layer remains across the dividing field line C: A = AQ, where
the mainstream approximations break down. Of course, as this layer thins with
increasing M the global resolution of the spectral method becomes more and more
difficult to implement and the boundary layer approach is then more attractive. For
the boundary layer treatment of the shear layer, the Alfvén variables V± are more
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relevant than Ω and B, which is why contours of their constant values are portrayed
also on figure 2. We discuss the nature of this free shear layer in the following section.

3. The shear layer C
For reasons that will become clear when we study the equatorial Hartmann layer

on the outer sphere in § 5, we introduce the notion of a CM-field line. It is defined to
be the field line CM: A = AM := 1/2rM , where rM < ro is chosen for our convenience
later to be a function of M with the property that rM ↑ ro as M → ∞. More
specifically it is a field line that emerges from inside the equatorial Hartmann layer
and so ro−rM = O(M−2/3), which remains small compared to the shear layer thickness
O(M−1/2).

Points on the CM-line may be defined parametrically by

s = rMζ
3/2, z = rMζ(1− ζ)1/2, (3.1a)

where

ζ = r/rM, and ζMi = ri/rM. (3.1b)

An important weighted measure of distance along the line is

α(ζ) = −2

∫
EM

s2BM · dx = 2

∫
EM

s2 dΦ

= −2

∫ ζ

1

1− 3
4
ζ

(1− ζ)1/2
dζ = (2− ζ)√1− ζ, (3.2)

where EM: (rM, 0) is the intersection of the CM-line with the equatorial plane. Thus
the weighted distance along CM from EM to its intersection QM: (sMi, zMi) with the
inner sphere is αMi := α(ζMi). Thus we normalize this distance by introducing the
coordinate lM defined by

lM :=

∫
QM

s2BM · dx
/∫ EM

QM

s2BM · dx = 1− α(ζ)

αMi

, (3.3a)

which has the property that it is zero at QM and unity at EM . Distance normal to CM
is measured by the stretched flux function coordinate

nM :=
√

2M/αMi(−A+ AM). (3.3b)

Throughout the remainder of this section we consider only the limiting case rM = ro.

3.1. The boundary layer formulation

We adopt boundary layer coordinates (l, n) ≡ (lM, nM) in the limit M →∞. They are

l := 1− α(ζ)/αi, n :=
√

2M/αi(−A+ AQ), (3.4a, b)

where

αi := 2

∫ Eo

Q

s2BM · dx = α(ζi) with ζi := ri/ro. (3.4c)

In terms of ζi the inner and outer spherical boundaries are located at

ri = ζi/(1− ζi) and ro = 1/(1− ζi). (3.4d )
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Our choice of sign in the definition of n ensures that n is positive in P and negative in
E. Relative to the boundary layer coordinates (l, n), the boundary layer approximations
of (2.10) yield

∂V±
∂l
± ∂2V±

∂n2
=

1

s

∂s

∂l
V∓, where s(l) = roζ

3/2 (3.5a, b)

is defined implicitly as a function of l via (3.2) and (3.4a). The pair of parabolic
partial differential equations (3.5a) are coupled by the term on the right-hand side,
which arises due to curvature effects. The strength of the coupling is determined by
the size of the coefficient

1

s

∂s

∂l
=

3αi
4

√
1− ζ

ζ
(
1− 3

4
ζ
) . (3.5c)

Solutions of (3.5a) are required that match with the mainstream solution (2.8).
Expressed in our boundary layer coordinates, (2.13) determines the boundary condi-
tions

V± →
 s ∓ (r2

o/s)
(

1−√αi/Mn
)

as n ↑ ∞
s as n ↓ −∞

(3.6)

on 0 < l < 1, remembering that s = s(l) and M = M/2r2
o .

To obtain the inner-sphere boundary conditions at l = 0, we need to consider
the Hartmann layer at Q. Since the shear layer thickness is O(M−1/2), that is the
latitudinal length scale imposed on B at the surface of the solid inner conductor.
The potential solution has the same radial scale and so we estimate that (∂B/∂r)i =
O(M1/2Bi) = O(M−1/2). Consequently, the Hartmann jump condition (2.12d) becomes
Ω = 1 + O(M−1/2), which determines the condition

V− + V+ = 2sQ + O(M−1/2) (3.7)

at l = 0 on the inner sphere.

The situation on the outer sphere is rather more delicate and we need to be aware
of its location So: s = so(z) relative to our boundary layer coordinates. On So, the
value Ao of A satisfies AQ−Ao = z2/2r3

o . Since the C-line and So are tangent to each
other at Eo, where l = 1, we may assume that, at given l close to unity, we may make
the approximations z ∼ ro(1 − ζ)1/2 and α ∼ (1 − ζ)1/2. In this way we obtain, using
(3.4a), the approximate results

Ao − AQ ∼ 1
2

(1− ζ)/ ro and 1− l ∼ √
1− ζ

/
αi, (3.8a, b)

which together with (3.4b) determines the approximate location

no = α
3/2
i M1/2 (1− l)2 (3.8c)

of the outer-sphere boundary So: n = no(l). Evidently So eats into the boundary
layer up to a distance |1− l| = O(M−1/4), as illustrated on figure 7 below. Fortunately
this distance tends to zero as M →∞ and so correct to lowest order the outer-sphere
boundary conditions can be applied at l = 1.

In the neighbourhood of the equator Eo, the outer-sphere Hartmann jump condition
(2.11) requires V+, to vanish, while symmetry demands that B vanishes on z = 0.
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Together they yield the boundary conditions

V+ =


0 for n > 0

V− ≡ ro
(

1−√αi/Mn
)−1

[1 + ΩS ] for n < 0
(3.9a, b)

at l = 1. Here we have introduced

ΩS (n) ≡ Ω − 1, (3.9c)

which measures super-rotation on the equatorial plane in the vicinity of Eo.
In addition to the O(M−1/2) errors introduced by ignoring the Hartmann layer

corrections at l = 0 and the higher-order matching terms as |n| → ∞ on 0 < l < 1,
more substantial errors O(M−1/3) are incurred at l = 1 through not considering the
small equatorial Hartmann boundary layer (|1 − l| = O(M−1/3) and n = O(M−1/6)),
see figure 7 below. We rectify that deficiency in § 5.

We solved the boundary layer equations (3.5a) numerically subject to the lowest-
order boundary conditions

V± →
{
s ∓ (r2

o/s) as n ↑ ∞
s as n ↓ −∞

(3.10)

on 0 < l < 1,

V− + V+ = 2sQ (3.11)

at l = 0, and

V+ =

{
0 for n > 0

V− ≡ ro [1 + ΩS ] for n < 0
(3.12)

at l = 1 on the outer sphere, where the O(M−1/2) terms appearing in (3.6), (3.7) and
(3.9a) have been neglected. Results for the shell radius ratio ζi = 0.35 employed for
figure 2 are illustrated in figure 3. The curves of constant V+ clearly indicate how it
is advected from the singularity at the equator of the outer sphere Eo: l = 1 in the
direction of decreasing l. It is essentially reflected at the inner sphere at Q: l = 0
and is returned as 2sQ − V− in the direction of increasing l. The advection–diffusion
equations (3.5a) for V± are coupled by the source term (1/s)(∂s/∂l)V∓ on their right-
hand side. This source term appears to be responsible for the ‘nose-like’ structures
visible on the contours of constant V± for the large Hartmann number solutions in
figure 2; they are clearly faithfully reproduced by the boundary layer solutions shown
in figure 3.

The value −B = roV−/2M on the outer sphere for l = 1 is of some interest. It
reduces from −B = ro/M as n ↑ ∞ to −B = ro(1 +ΩS (0))/2M as n ↓ 0. The fact that
it is not zero determines the strength of the equatorial current source

Jsource = − 1
2
π [1 + ΩS (0)]/M = 1

2
[1 + ΩS (0)]Jout, (3.13)

which emanates from the equatorial Hartman layer, where n = O(M−1/6) (see § 6
below). The remaining current Jout[1 − ΩS (0)]/2 is returned directly into the shear
layer (n = O(1)) from the Hartmann layer itself, where n � M−1/6. This feature is
clearly portrayed by the contours of −MsB = constant in figure 3; some contours
stem from the source, while others originate from the Hartmann layer at l = 1. There
is also evidence of this partitioning of the return current into the source Jsource and the
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continuous distribution Jout − Jsource from the full numerics for the case M/r2
o = 104

portrayed in figure 2.

3.2. The narrow gap limit

Though the boundary layer problem posed can only be solved numerically in general,
some analytic progress can be made in the narrow gap limit

ε = (ro − ri)/ro � 1, (3.14a)

for which we may make the estimates

ro − s
ro

= O(ε) and
1

s

∂s

∂l
= O(ε) noting that 1− ζi = ε. (3.14b)

Upon neglecting the O(ε) terms in the boundary layer equations (3.5a), they then
decouple and can be solved successively. Even though the ensuing system is relatively
simple, it retains sufficient complexity to demonstrate the super-rotation phenomena.
So our prime objective here is to determine the unknown super-rotation ΩS (n).

We take (3.12) as our initial data V−(n, 1) = ro[1 + ΩS (n)] at Eo and solve the
diffusion problem on 0 < 1− l < 1 for V+. Its value V+(n, 0) at Q provides, via (3.11),
the initial data V−(n, 0) = 2 − V+(n, 0) for V+ on 0 < l < 1. The solution to both
problems can be expressed in the form

V±
ro

= 1∓ 1
2

erfc

( − n√
4(1∓ l)

)
± 1√

4(1∓ l)π
∫ 0

−∞
ΩS (n′) exp

(
− (n− n′)2

4(1∓ l)
)

dn′. (3.15)

The requirement, that the final value V−(1, n) for n 6 0 at Eo is the same as the initial
value of V+(1, n) there, leads to the integral equation

ΩS (n) = 1
2

erfc

(− n√
8

)
− 1√

8π

∫ 0

−∞
ΩS (n′) exp

(
− (n− n′)2

8

)
dn′, (3.16)

for n 6 0, whose solution in turn determines the complete solution (3.15). In turn,
the corresponding values of sΩ = (V+ +V−)/2 and B = (V+−V−)/2M (see (2.9)) are
readily obtained.

For n < 0, the solution of the diffusion problem can be expressed in terms of
normal modes periodic in l of half period l = 2. Such separable solutions exist with

ΩS (n) = Re

{ ∞∑
k=0

Ω̂k exp
[
(1 + i)

√
(2k + 1)π

n

2

]}
on n < 0. (3.17a)

Here the complex constants Ω̂k are the coefficients of the Fourier expansion of a
periodic C-line function, which reverses sign under the shift l → l + 2 and is defined
by r−1

o V+(0, 1− l)− 1 on 0 6 l 6 1 and 1− r−1
o V−(0, l− 1) on 1 6 l 6 2. Of course, the

values of Ω̂k are unknown, but the form of (3.17a) does provide useful information
about the large −n behaviour, namely that

ΩS (n) ∼ |Ω̂0| exp
(

1
2

√
π n
)

cos
(

1
2

√
π n− ϕS) as n ↓ −∞, (3.17b)

where Ω̂0 = |Ω̂0| exp (−iϕS ). Essentially, ΩS oscillates with period 4
√
π and decays

exponentially in the −n-direction.
Though (3.17a) can be used as the basis of a method of solution, it is perhaps

more instructive to solve (3.16) by successive iteration. This gives a series expansion
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V+

V–

Ω–1

–MsB

Figure 3. The numerical solution of the boundary layer equations (3.5a) in the l, n-plane for the
radius ratio ri/ro = 0.35 of figure 2. The l-axis 0 6 l 6 1 is identified by the horizontal dashed lines;
the vertical extent is −15 6 n 6 15. As in figure 2, positive (negative) isovalues are indicated by the
continuous (dotted) lines.

whose first two terms are

ΩS (n) =
1

2

[
erfc

(− n√
8

)
− 1√

8π

∫ 0

−∞
erfc

(− n′√
8

)
exp

(
− (n− n′)2

8

)
dn′ + · · ·

]
(3.18a)

which reduces to

ΩS (n) =
3

4
erfc

(− n√
8

)
− erfc

(− n
4

)[1

2
− 1

8
erfc

(− n
4

)]
+ · · · . (3.18b)

The numerical solution for V+(1, n)/ro = 1 + ΩS (n) obtained by taking the first two
terms of (3.18) is illustrated by the dashed curve on figure 4, which according to
(3.18b) terminates with ΩS = 3/8 at n = 0.

The iterated solution agrees with the numerical solution of the boundary layer
equations and they are also shown on figure 4. As n is increased from −∞, the value
of ΩS decreases slightly from zero to a minimum ΩS ≈ −0.0070 at n ≈ −4.3636 and
then increases monotonically through zero at n ≈ −3.4376. The separation (≈ 0.93)
between the minimum and zero of ΩS is in excellent agreement with the eighth period√
π/2(≈ 0.89) predicted by the large −n asymptotic result (3.17b). Then ΩS continues

to increase, terminating at n = 0 with the value ΩS (0) ≈ 0.4139. This lies within the
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Ω

Figure 4. The angular velocity 1 + ΩS (n) on the equatorial plane plotted vs. n in the narrow gap
limit ε � 1. The dashed line denotes the two-term solution (3.18), the continuous line denotes its
iteration to 100 terms and the stars denote the numerical solution of system (4.1).

range 0.375 < ΩS (0) < 0.5 suggested by the single-term and two-term expansions of
(3.18a), which by the alternating nature of the series naturally bound the realized
value. Of greater significance is the fact that ΩS > 0 in the range −3.4376 < n 6 0.
This feature is obvious even from the simple first term of the series expansion (3.18a),
while the region of small negative ΩS is suggested by the two-term representation
(3.8b).

Our semi-analytic treatment of the narrow gap limit isolates the key mechanisms
responsible for super-rotation. In particular, curvature effects, which we neglected
in (3.14), are evidently unnecessary. Instead, we need to examine carefully how the
electric current circuits are closed inside the electrically conducting fluid; we discuss
this issue in the wide gap context in § 4.2 below.

In the next section we describe the numerical procedures adopted to solve the shear
layer boundary layer problem. We discuss in more detail the nature of the results and
make quantitative comparisons with the numerical solution of the complete governing
equations (2.3) illustrated in figure 2 at finite M.

4. Numerical solution of the C-boundary layer equations
The numerical solution of (3.5a) subject to the boundary conditions (3.10), (3.11)

and (3.12) can be achieved by successively relaxing (3.5a+) and (3.5a−). We chose
to use a finite difference scheme, well suited for this geometry. It consisted of a
second-order scheme to compute the diffusion along n, and an up-wind first-order
scheme to compute advection in l.

4.1. Narrow gap limit

The solution of the uncoupled system

∂V±
∂l
± ∂2V±

∂n2
= 0 (4.1)
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appropriate to the narrow gap limit does not raise any particular difficulties. We
only need to reduce the infinite domain in n to a finite computational domain.
Solutions were obtained subject to two distinct sets of boundary conditions at the
upper and lower n-boundaries. On the one hand, we applied Dirichlet boundary
conditions and, on the other, Robin boundary conditions (exponential decrease). We
checked that our computational domain was large enough for both approaches to
give the same results. By this device numerical solutions were obtained (see the stars
of figure 4) that are in excellent agreement with the iterated analytical solution (3.18)
of § 3.2.

4.2. Wide gap limit

The numerical solution of the coupled system (3.5a) requires some additional care.
As n → ±∞, our boundary conditions (3.10) require that n-derivatives vanish.

There V± solves

∂V±
∂l

=
1

s

∂s

∂l
V∓ (4.2)

with diffusion neglected and its solution is, of course, that defined by (3.10) as
n→ ±∞. In the case of the discrete analogue of (4.2), the boundary condition (3.10)
as n ↓ −∞ is a solution but the boundary condition (3.10) as n ↑ ∞ is not; this is
due to the nature of the up-wind discrete operator. Indeed, the error thus introduced
if (3.10) is used as the numerical boundary condition does not let the successive
relaxations reach a steady solution and the iterative resolution diverges. To overcome
this difficulty, we replaced (3.10) as n → +∞ with the numerical solution of (4.2)
imposing V+ = 0 at l = 1 and V− = 2sQ − V+, at l = 0. This numerical boundary
condition is consistent in the sense that it tends to (3.10) as the number of l-points
tends to infinity.

The numerical approximation of (3.5a) itself has inherent difficulties. We add
artificial diffusion (often referred to as ‘numerical diffusion’) to this equation in the
l-direction by use of the up-wind operator. This diffusion was kept small by using
a large number of points (up to 8000) in this l-direction. For that, the difference
between the numerical and exact boundary condition mentioned above is then less
that 1%. We employed 600 points in the n-direction and results for the case ζi = 0.35
are illustrated on figure 3; they should be compared to the full numerical solution of
(2.3) illustrated in figure 2.

A more quantitative comparison between the boundary layer solution and the full
numerics is possible by looking at the cross-sections of the shear layer at various
values of l as illustrated in figure 5 for the case ζi = 0.35. Our boundary layer equations
have been solved subject to the conditions that all quantities tend to constants as
n → ∞ (see (3.10)). Nevertheless, it is quite clear that the numerical results at finite
Hartmann number veer away from those constant values as n ↑ ∞. This is consistent
with the O(M−1/2) corrections present in the true boundary conditions (3.6). The
termination of the finite-M curves at certain positive values of n reflects the fact that
the cross-section has either reached the symmetry axis (l = 0.1) or the outer sphere
l = 0.4 and l = 0.7; in the extreme case (l = 1.0) the outer boundary is reached at
n = 0 in all cases. The abrupt drops in values of V− visible in some cases for l = 0.4
and 0.7 are manifestations of the Hartmann layer on the outer boundary.

It is important to remember that contours of constant sB are electric current lines
(see above (2.8)). In the mainstream region they are almost parallel to the meridional
field lines (see (2.8)) and so produce no Lorentz force. That negative electric current
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Figure 5. For caption see facing page.

(j is directed inwards) is returned in the outer Hartmann boundary layer to the
equator. Its total magnitude on entering the shear layer is |Jout| (see (2.14)). A small
fraction |Jout|(1−Ωs(0))/2 escapes directly into the shear layer but the larger fraction
|Jsource| = |Jout|(1+Ωs(0))/2 (see (3.3)) is returned from the small equatorial Hartmann
layer, which on the scale of the shear layer is a point source. The consequences of that
are clear in figure 3. The negative current Jsource emerging from the source spreads with
decreasing l (j is directed outwards). Whether the corresponding contours of constant
sB cross the contours n =constant from below or above determines the sign of the
Lorentz force j×BM . In figure 3 the contours of −MsB have the correct inclination for
negative n to accelerate the fluid. Another measure of the domain, in which the fluid
is accelerated, is provided by figure 5. There acceleration occurs when ∂2Ω/∂n2 < 0,
which is identifiable for moderate negative values of n. The cross-section l = 1 is
particularly revealing in this respect, exhibiting features similar to those already seen
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Figure 5. The quantities V+/ro, V−/ro, Ω and −MsB plotted vs. n at l = 0.1, 0.4, 0.7 and 1.0
for the radius ratio ri/ro = 0.35. Numerical solutions of the governing equations (2.3) are shown
for M/r2

o = 102, 103, 104 by continuous (except for V−/ro dashed) lines of increasing solidity; the
numerical solutions of the boundary equations (3.5a) are identified by the short-long-dashed curves.
The larger the value of M the closer the curve is to the asymptote.

in the narrow gap limit, and is well represented by the asymptotic solution. For that
the value of ΩS decreases slightly from zero at n = −∞, as n is increased; it attains its
minimum ΩS ≈ −0.01780 at n ≈ −6.4776, then increases monotonically through zero
at n ≈ −5.1619 to its maximum Ω ≈ 0.4530 at n ≈ −0.7663, then finally decreasing
and terminating at n = 0 with the value ΩS (0) ≈ 0.4147 close to the value found in
the narrow gap limit.

The fact that the maximum angular velocity Ω is found on the equatorial plane
(l = 1) not at Eo (n = 0) but at a finite distance inside the fluid at n ≈ −0.7663, is
a curious feature special to the finite gap. It is therefore dependent on the coupling
term (1/s)(∂s/∂l)V∓ on the right-hand side of (3.5a). The plots at l = 0.7 on figure 5
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Figure 6. As for figure 5 (except for V− now continuous) but plotted vs. l on the C-line n = 0.

suggest that the value of V+ being advected inwards from the equator acts as a
sufficiently strong source to alter the outwardly advected V− giving it a flattened
profile at its centre. This is ultimately manifested by the interior local maximum on
the equator. Another manifestation of the same effect is identified by an ‘S’-shaped
contour of V− at the centre of the layer close to the equator l = 1 in figure 3.

An alternative and somewhat more testing comparison is made on figure 6, where
quantities are plotted on the C-line (n = 0). There some apparently substantial
differences between the numerics and asymptotics are visible. The most obvious
failure occurs in the neighbourhood of l = 1 and can be accounted for by noting
that when |1− l| = O(M−1/3) the C-line is inside the equatorial Hartmann boundary
layer, where the shear layer boundary layer problem that we have solved ceases to be
valid. Outside this equatorial layer it appears that our numerics converge slowly for
large M.

Returning to figure 5, we notice that the Ω-profiles appear to be shifted by an
amount consistent with a boundary layer displacement induced by the equatorial
Hartmann layer. We explore this idea in the next section and isolate such a boundary
layer displacement through solving the equatorial Hartmann layer problem. We then
redraw the figure 5(a) for Ω at l = 1 in figure 9 below but with each finite-M
curve displaced by its appropriate amount. In the same spirit, we draw figure 10
below equivalent to figure 6 but the results for the full numerical solution at each
given M are plotted on the properly chosen displaced CM-line. The improvements
obtained strongly support our contention that the leading-order corrections stem
from a boundary layer displacement.
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Figure 7. A schematic representation of the equatorial Hartmann layers and its neighbouring
boundary layers on the outer-sphere boundary So. Its relation to the M−1/2 C-shear layer and the
outer sphere M−1 Hartmann layer are shown (a) in the meridional plane and (b) relative to the l, n
boundary layer coordinates of the shear layer.
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Figure 8. The angular velocity profiles Ω plotted vs. ρ in the equatorial Hartmann layer on the
equator τ = 0 for the radius ratio ri/ro = 0.35. The curves for M/r2

o = 102, 103, 104 are identified by
continuous lines of increasing solidity, which for small ρ approach the asymptotic solution (5.12)
given by the short-long dashed curves.

5. Equatorial Hartmann layer
The length scales for the equatorial Hartmann layer are dictated by the outer-sphere

boundary shape (3.8) in the immediate vicinity of Eo and the form of the shear layer
equations (3.5c). Together they suggest the change of variables

1− l = α−1
i M−1/3 τ, n = −α−1/2

i M−1/6 ρ, (5.1a, b)

for which the boundary So: n = no(l) (see (3.8c)) is transformed to

ξ := ρ+ τ2 = 0. (5.2)

The length scales of the equatorial boundary layer are therefore |1 − l| = O(M−1/3)
and n = O(M−1/6) (or equivalently ro − s = O(M−2/3)), as indicated on figure 7. With
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these estimates the coefficient (1/s)(∂s/∂l) (3.5c) on the right-hand side of (3.5a) is
O(M−1/3). Therefore, the term on the right-hand side of (3.5a) is smaller than the large
derivatives on the left-hand side by a factor O(M−2/3) and may clearly be neglected,
leaving

∂V±
∂τ
∓ ∂2V±

∂ρ2
= 0. (5.3)

The simplest way to formulate our boundary layer problem is to solve on the
infinite interval −∞ < τ < ∞ which includes the other half of the boundary layer in
the southern hemisphere z < 0. In this way our symmetries imply that V± can be
defined in terms of a single function Θ(ρ, τ), which solves the diffusion equation

∂Θ

∂τ
=
∂2Θ

∂ρ2
on ρ > −τ2 (5.4)

as follows:

V±(ρ, τ) = ro[1 + ΩS (0)] [1−Θ(ρ,±τ)]. (5.5)

The idea is simply that the value of V− being advected in the shear layer down
towards the equatorial Hartmann layer is given by ro[1−ΩS (0)] as τ ↑ ∞, namely the
leading-order approximation of it for n = O(M−1/6). This provides our initial value
unity for Θ as τ ↓ −∞. It also provides our boundary condition as ρ ↑ ∞. Since both
B and Ω vanish on the boundary, our diffusion equation (5.4) must be solved subject
to the boundary conditions

Θ

{
= 1 on the outer sphere ρ = −τ2

→ 0 as ρ ↑ ∞, (5.6)

and the initial condition

Θ = 0 for ρ > −τ2 as τ ↓ −∞. (5.7)

In order to make analytic progress, it is helpful use ξ (see (5.2)) and τ as our
dependent variables rather than ρ and τ. Then in place of (5.4), Θ satisfies

∂Θ

∂τ
+ 2τ

∂Θ

∂ξ
=
∂2Θ

∂ξ2
on ξ > 0. (5.8)

We see at once that the large negative-τ solution has the asymptotic form

Θ = exp (2τξ) as τ ↓ −∞. (5.9)

Here the exponential simply defines a very thin boundary layer, which for our MHD
problem corresponds to the Hartmann layer associated with V− as it approaches
the equator in the shear layer from above. As τ increases, the boundary layer
width, O(−1/τ), thickens. Relative to the latitude λ = sin−1(z/ro), this corresponds to
the radial width of the Hartmann layer thickening proportional to O(|λM|−1). The
thickening stops at width O(M−2/3), when λ = O(M−1/3), which defines the dimensions
of the equatorial Hartmann layer as illustrated in figure 7.

The layer detaches from the boundary at τ = 0 and for large positive τ becomes the
shear layer in the neighbourhood of the C-line ρ = 0 or equivalently ξ = τ2. There it
has the asymptotic form

Θ =
1

2
erfc

(
ρ− δ√

4τ

)
as τ ↑ ∞ (5.10)
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on −τ2 < ρ < ∞, where the constant δ of order unity is determined by the solution.
To understand the nature of (5.10), we note that with δ = 0 it is the solution of the
diffusion equation (5.4) on the infinite interval −∞ < ρ < ∞ subject to the initial
conditions Θ = 0 on ρ > 0 and Θ = 1 on ρ 6 0 at τ = 0. This is exactly the boundary
condition which we employed at l = 1 in the previous § 4, to solve for the free shear
layer. The point that we wish to stress is that, when we match the shear layer solution
to the equatorial Hartmann layer solution, the shear layer is effectively triggered on
the equator at ρ = δ rather than at ρ = 0. In other words, the effective C-line is the
CM-line, which intersects the equatorial plane at

n = − α−1/2
i M−1/6 δ ; (5.11a)

it determines

(ro − rM)/rM =M−2/3δ (5.11b)

entirely in terms of the local Hartmann number (2.2) appropriate to the equatorial
Hartmann layer. We relegate the details of the calculation to the Appendix but note
that complete solution (A1) and (A2) yields the result (A12), (A13). From them we
deduce

δ = 2

∫ ∞
0

[Ai(σ)]2 +
√

3Ai(σ)Bi(σ)

[Ai(σ)]2 + [Bi(σ)]2
dσ ≈ 1.2551, (5.11c)

where Ai and Bi are the usual Airy functions.
The solution (A1), (A2) may also be used to determine the angular velocity

Ω(ρ) = [1 + ΩS (0)] [1−Θ(ρ, 0)] (5.12a)

on the equatorial plane, where

Θ(ρ, 0) =

∫ ∞
0

{
Ai(σ)

[
Ai(ρ+ ω−1σ)

Ai(ω−1σ)
+

Ai(ρ+ ωσ)

Ai(ωσ)

]
+ Ai(ρ+ σ)

}
dσ (5.12b)

in which ω = exp (i2π/3). We plot Ω on figure 8 using the value

ΩS (0) = 0.4147 . . . for the case ζi = 0.35 (5.13)

determined by the free shear boundary layer calculation reported in § 4. The corre-
sponding values of the angular velocity computed from the full numerical integrations
at finite M are also portrayed for comparison.

In order to make a more faithful comparison with the shear layer boundary
layer solution and the numerics, we take into account the displacement thickness
determined by (5.11) in portraying the finite-M results in figures 9 and 10 below. By
that we mean that each finite-M numerical solution is determined as a function of
the shear layer boundary layer coordinates (lM, nM) defined by (3.3) which are based
on the CM-line defined by AM = 1/2rM , where rM given by (5.11b). At any given
point in the shear layer, we note that l− lM is small, O(M−2/3), so that the distinction
between lM and l is unimportant, while correct to lowest order we have

n− nM = −
(
ro

2

)1/3(
2

αi

)1/2

M−1/6δ

≈ −1.4101M−1/6 for the case ζi = 0.35, (5.14)

which though small is relatively large and significant.
In figure 9, we redraw the equatorial plot of Ω against n at l = 1 displayed in

figure 5(a). Now each finite-M solution is plotted against nM at lM = 1, whereas the
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M/r2
o 100 1000 10000 Asymptotic

nmax −1.95 −1.40 −1.12 −0.77

ρmax 3.74 3.94 4.63

ρSmax 1.48 2.17 3.18

Table 1. The location of the finite-M maxima of Ω in terms of the boundary layer coordinates
nmax, ρmax. The asymptotic boundary layer value nmax = −0.77 is cast in terms of the equatorial
Hartmann layer coordinate ρSmax.

asymptotic solution is left untouched. This plot is most revealing as it confirms that
corrections arising from the displacement thickness give excellent agreement between
the shear layer solution and the full numerics outside the thin equatorial Hartmann
layer. Though good comparisons of Ω inside the equatorial Hartmann layer are also
evident in figure 8, the lack of a clear asymptotic trend for large ρ can be attributed
to the fact that we are not yet in a true asymptotic regime. This is highlighted by
noting the locations n = nmax at which Ω (full numerics) and 1 +ΩS (the shear layer)
are maximum on the equatorial plane and translating them into the boundary layer
coordinate values ρ = ρmax and ρSmax respectively. We list these values in table 1. Thus
the location where the curvature of the free shear layer solution is important remains
within the equatorial Hartmann layer even for the largest value of M considered.
The implication is that quadratic, as well as linear effects, are influencing the large-ρ
trends visible in figure 8.

On figure 10, we repeat the plots of figure 6 but with one crucial difference: each of
the finite-M numerical solutions is plotted versus lM on its CM-line nM = 0. Though
necessary differences between the shear layer solution and the full numerics remain
in the equatorial Hartmann layer near lM = 1, the comparisons outside are far better
than those reported in figure 6. Yet again the results confirm the reliability of the
notion of a displacement thickness that we have developed.

Some bumps on the Ω-profiles can be identified near lM = 1 on figure 10, where
the CM-line nM = 0 enters the equatorial Hartmann layer. These bumps were absent
on the C-lines n = 0 portrayed in figure 6. Thus these contrasting features provide
information about the nature of the equatorial Hartmann layer at finite M.

6. Discussion
We have successfully resolved the mainstream and boundary layer structures,

obtaining their solutions by a combination of analytical and numerical techniques.
The cornerstone of our development has been the successful implementation of
numerical methods to solve the unusual coupled advection–diffusion equations that
govern the shear layer. The solution of that problem clearly accounts in a semi-analytic
way (certainly in the narrow gap limit) for the phenomenon of super-rotation. The
numerical solution of the complete governing equations at large M is also difficult.
That results were obtained at sufficiently large M to obtain convincing agreement
with the asymptotic theory was most reassuring.

From a more general point of view, the mechanism for super-rotation described in
§ 4.2 hinges on the electric current flow in our system. Essentially, negative electric
current flows outwards along field lines in the polar region P (total Jout see (2.14)), it
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Figure 9. As in figure 5(a), except that Ω at each M is plotted vs. nM at lM = 1. Note that nM ≡ n
for the asymptotic shear layer solution.

is carried down to the equator in the outer-sphere Hartmann layer and returns to the
inner sphere along the C-line shear layer. A substantial fraction Jsource (see (3.13)),
however, reaches the equatorial Hartmann layer, which effectively acts as a current
source and thus as the essential mechanism leading to super-rotation. In particular,
the current emitted from the source largely follows the C-line but spreads laterally
through diffusion. This leads to a Lorentz force, which is largely accelerating on the
equatorial side and de-accelerating on the polar side. This phenomenon is well known
in the context of channel flow, where current injected from electrodes, which are
embedded in the channel boundary, attempts to follow the magnetic field lines (see
Müller & Bühler 2001, figures 7.1 and 7.2).

Starchenko (1997) notes that the Hartmann jump condition (2.2d) can imply super-
rotation in the fluid adjacent to the inner sphere, when (1/siBri)(∂B/∂r)i > 0 (see his
equation (81)). That this is likely to happen in the equatorial region E is clear from
the contours of constant sB inside the solid conducting sphere near the equator seen
in our figure 1. Since Ω is constant on meridional field lines, small super-rotation,
O(M−1), should be present throughout E. The Hartmann jump is stronger, O(M−1/2),
near Q at the end of the C-line shear layer. Nevertheless, our analysis of the shear
layer shows that current diffusion in the shear layer has the dominating O(1) effect
and that the Hartmann jump can be ignored. Thus Starchenko’s argument is not able
to account for the O(1) super-rotation that we find and explain.

Hollerbach (2000) also considers numerically the cases in which the inner and outer
spheres are either both insulating or both conducting. The key to understanding the
dynamics of these configurations is the role played by the Hartmann layers. We limit
our discussion to the later more dramatic conducting case for which the inner-sphere
Hartmann layer has solution (2.12), while a similar solution pertains to the outer
boundary. Now for our inner conducting and outer insulating problem, we can accept
a small O(M−1) azimuthal magnetic field B by virtually locking the angular velocity
Ω of the mainstream flow to the rotation Ω = 1 of the inner conducting sphere. When
both the inner and outer solid spheres are conducting, that is no longer possible. Now
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Figure 10. As in figure 6 (note that the Ω scale has been stretched), except that solutions at each M
are plotted vs. lM on each CM-line nM = 0. Note that lM ≡ l for the asymptotic shear layer solution.

both Hartmann layers have to accept an O(1) jump in the angular velocity, which is
only achieved with a corresponding azimuthal magnetic field B = O(1) (see (2.12d)).
A correct physical explanation for this increase in magnitude of B was provided
by Hollerbach (2000) in interpreting his numerical results for different boundary
conditions. His explanation relies on two facts. First, for insulating outer boundaries,
the electric current Jout flowing outwards along meridional magnetic field lines in
the mainstream polar region P is transmitted to the equator inside the outer-sphere
Hartmann layer, as we repeatedly stress. This leads to Lorentz forces that can achieve
O(1) angular velocity jumps for relatively small azimuthal magnetic fields. Secondly,
for conducting outer boundaries, the electric currents leak out of the Hartmann
layers into the solid conductor. So to obtain a sufficiently strong Lorentz force in the
Hartmann layer capable of supporting the angular velocity jump, the entire current
flow in the system must be increased by a large factor, O(M).

We tentatively propose the following scenario for Hollerbach’s conducting inner
and outer spheres. In the mainstream, sB continues to be constant on meridional
magnetic field lines, being zero in the equatorial region E and order unity (O(1)) in
the polar region P (i.e. O(M) larger than for our case (2.8b)). Then by the magnetic
induction equation (2.3b), the resulting Ω is also O(1) in the mainstream outside the
shear layer C but no longer constant on field lines in the polar region P. Furthermore,
we propose that, unlike our problem, the bulk of the relatively large O(1) electric
current flow is returned in the mainstream polar region P. This is accompanied by
sB decreasing to zero as the C-line is approached from the polar side. Provided
that the decrease is linear, we estimate that the magnetic field, inside the shear layer



Super-rotating MHD shear layer in spherical shell 287

on its O(M−1/2) width, is O(M−1/2). This means that his Alfvén variables would be
O(M1/2) larger than ours leading to a stronger super-rotation of magnitude O(M1/2).
This magnitude compares favourably with Hollerbach’s (2000) numerical estimate of
O(M0.6). However, the general picture for the super-rotation mechanism in the shear
layer, that we have proposed, should still apply, though, interestingly, this is despite
the fact that only a relatively small fraction, O(M−1/2), of the entire O(1) current flow
follows the C-line. We stress that all these estimates stem from a preliminary theory,
which forms the basis for a complete analysis of the problem at present in progress.

Considering that Roberts (1967b) had obtained, such a long time ago, an analytic
solution for the case of an equatorial Hartmann layer with magnetic field lines bending
towards the walls on leaving the equatorial plane, it is surprising that the alternative
problem with the field lines bending away does not appear to have been addressed.
Though the method of solution in the two cases is essentially the same, the specific
details and answer are different. Significantly our derivation of the displacement width
δ∗ for the free shear layer enabled us to make considerable improvements with our
quantitative comparisons with the full numerics. This leads us to believe that we have
resolved correctly all the major boundary layer processes.

It should be stressed that a key feature which enables progress to be made with the
equatorial boundary layer solution in § 5 is the insulating boundary condition that
requires B = 0. By implementation of the zero boundary condition on both V+ and
V−, the two diffusion equations (5.3) remain uncoupled. For more general boundary
conditions that is not the case. Whatever the boundary conditions, the corresponding
equatorial boundary layer solution only leads to low-order corrections; the dominant
leading-order results are not dependent on this layer.
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Appendix. The equatorial Hartmann layer solution
We adapt Roberts’ (1967b) solution to a related problem of Hartmann flow down

a circular pipe with a uniform transverse magnetic field applied (see also Waechter
1969). The common feature is the existence of points on the boundary at which the
magnetic field is tangent. The problems differ in that our field lines bend away from
the boundary into the fluid as the equator is left, whereas his effectively approach the
boundary. Put another way, his problem would have been equivalent to ours if his
fluid were outside rather than inside the pipe! So though the techniques involved in
our solution are similar to his, the details are quite different.

Roberts’ (1967b) solution relies on the preliminary change of variables

Θ(ξ, τ) = exp (τξ − 1
3
τ3)Φ(ξ, τ), (A 1a)
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which satisfies (5.8) when

∂2Φ

∂ξ2
− ξΦ =

∂Φ

∂τ
. (A 1b)

Guided by Roberts’ (1967b) analysis, we demonstrate that the solution of the problem
specified by (5.4), (5.6) and (5.7) is

Φ = Φ−1 + Φ0 + Φ1, (A 2a)

where

Φn =

∫ ∞
0

Ai(σ)Ai(ξ + ωnσ)

Ai(ωnσ)
exp (ωnτσ) dσ (ω = exp (i2π/3)); (A 2b)

here ω−1, 1 and ω are the cube roots of unity. Note also that Φ−1 = Φ∗1 for real ξ and
τ, where the star denotes the complex conjugate. It is a trivial matter to verify that
(A 2) satisfies (A 1b) by direct substitution. It only remains to show that the boundary
conditions (5.6) and initial conditions (5.7) (also (5.9)) are met.

A key step in establishing the result (A 2) is to note that the boundary condition
(5.6) Θ = 1 at ξ = 0 is met simply because of the identity∫ ∞

0

Ai(σ)
[
exp

(
ω−1τσ

)
+ exp (τσ) + exp (ωτσ)

]
dσ = exp

(
1
3
τ3
)
. (A 3a)

This is readily established using the power series representations of the exponentials
and the identity

3

∫ ∞
0

σ3mAi(σ) dσ =
(3m)!

3mm!
for m = 0, 1, 2, 3, . . . . (A 3b)

Here the case m = 0 is given by Abramowitz & Stegun (1964, equation (10.4.47)),
while the cases m > 1 follow by mathematical induction using the property σAi(σ) =
d2Ai(σ)/dσ2 and integrating by parts; Roberts (1967b) obtained a comparable result
(his equation (49)) using integral properties of Bessel functions.

Since all the Airy functions in (A 2b) decay exponentially for large positive σ, it is
self-evident that the solution (A 2a) satisfies the boundary condition Φ→ 0 as ξ ↑ ∞.

As a preliminary step to establish the initial condition (5.7) we note the alternative
form

Φ = Φ̃−1 + Φ̃0 + Φ̃1, (A 4a)

where

Φ̃n =

∫ ∞
ω−nνs

Ai(σ)Ai(ξ + ωnσ)

Ai(ωnσ)
exp (ωnτσ) dσ, (A 4b)

where νs is a positive real chosen for our convenience in (A 6) below. In obtaining
(A 4), we have cancelled the contributions from each Φn-integral from 0 to ω−nνs on
the basis of the identity ω−1Ai(ω−1ν) + Ai(ν) + ωAi(ων) = 0 (see Roberts 1967b ,
figure 3 and discussion below it). The idea is to evaluate the remaining integrals
(A 4b) by the method of steepest descents. For Φ̃1, we make the change of variables
σ = ω−1ν, use the appropriate asymptotic form for Ai in the relevant sector on the
complex plane (cf. Roberts 1967b, figure 2 in the n = −1 context) to obtain the
asymptotic representation

Φ̃1 ∼
∫ νs+i∞

νs

exp (g(ν))

i
√

4π (ν + ξ)1/4
dν (A 5a)
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for −τ� 1, where

g(ν) = 2
3

[
2ν3/2 − (ν + ξ)3/2

]
+ ντ. (A 5b)

Like Roberts (1967), we start the integration from the saddle point νs, which solves

g′(νs) = 2ν1/2
s − (νs + ξ)1/2 + τ = 0. (A 6a)

For ξ � τ2, it determines

ν1/2
s ∼ −τ

(
1 +

ξ

2τ2

)
, (νs + ξ)1/2 ∼ −τ

(
1 +

ξ

τ2

)
, (A 6b)

from which we obtain

g(νs) ∼ 1
3
τ3 + τξ. (A 7a)

The steepest-descent integration off the saddle in the positive imaginary direction
then determines

Φ̃1 ∼ 1
2

exp
(

1
3
τ3 + τξ

)
. (A 7b)

Then the sum Φ̃−1 + Φ̃1 dominate the contributions to Φ̃ and together with (A 1) yield
the initial boundary layer form (5.9) for −τξ = O(1). This conclusion is important as
it finally establishes our claim that (A 2) is the solution to our diffusion problem.

To obtain the large positive-τ behaviour we first evaluate the dominant contribution
Φ0, again using the large-argument asymptotic representation for Ai. It yields

Φ0 ∼
∫ ∞

0

exp (f(σ))√
4π (σ + ξ)1/4

dσ (A 8a)

for τ� 1, where

f(σ) = − 2
3
(σ + ξ)3/2 + στ. (A 8b)

The saddle point σs, which solves

f′(σs) = −(σs + ξ)1/2 + τ = 0 is σs = τ2 − ξ ≡ −ρ. (A 9a)

It determines

f(σs) ∼ 1
3
τ3 − τξ. (A 9b)

For ρ = O(τ1/2), asymptotic evaluation in the neighbourhood of the saddle yields

Φ ∼ 1
2

exp
(

1
3
τ3 − τξ) erfc

(
ρ√
4τ

)
. (A 10)

With (A 1a) this determines the leading-order approximation to the asymptotic solu-
tion (5.10).

To obtain the next-order term we consider Φ1, which we evaluate using the large-
argument expansion of Ai(ξ + ωσ) alone. It gives

Φ1 ∼
∫ ∞

0

Ai(σ)

Ai(ωσ)

exp (h(σ))√
4π (ξ + ωσ)1/4

dσ, (A 11a)

where

h(σ) = − 2
3
(ξ + ωσ)3/2 + ωστ. (A 11b)

Since the ratio of the two Airy functions decays exponentially as σ ↑ ∞, we expand
(A 11b) on the basis that ρ = O(τ1/2), τ � 1 and σ = O(1). To that end, we write
ξ = τ2+ρ and retain the first three terms in the binomial expansion of [τ2+(ρ+ωσ)]3/2.
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It yields

h(σ) ∼ 1
3
τ3 − τξ − (ρ+ σω)2

4τ
. (A 12)

Here the terms proportional to σ are negligible, when σ = O(1). In this way, we
obtain the leading-order result

Φ1 ∼ δ1√
4πτ

exp

(
1
3
τ3 − τξ − ρ2

4τ

)
, where δn :=

∫ ∞
0

Ai(σ)

Ai(ωnσ)
dσ, (A 13a, b)

with n = 1.
Finally we note that, for ρ = O(τ1/2), τ � 1, our proposed asymptotic solution

(5.10) has the Taylor series expansion

1

2
erfc

(
ρ− δ√

4τ

)
∼ 1

2
erfc

(
ρ√
4τ

)
+

δ√
4πτ

exp

(
− ρ

2

4τ

)
. (A 14a)

This agrees with our results (A 10) and (A 13) when

δ = δ−1 + δ1, (A 14b)

which with (A 13b) reduces to (5.11c).
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